
BOOKS - SCIENCE AND STUDY - Introduction to Abstract Algebra, Fourth Edition

Introduction to Abstract Algebra, Fourth Edition
Author: W. Keith Nicholson
Year: 2012
Pages: 561
Format: PDF
File size: 23,82 MB
Language: ENG

Year: 2012
Pages: 561
Format: PDF
File size: 23,82 MB
Language: ENG

The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra, groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems. This edition includes new sections on the symmetries of geometric transformations and the representation theory of finite groups, as well as expanded coverage of algebraic applications. The text is written at a level appropriate for students who have had one to two years of college mathematics, and it emphasizes the importance of understanding the process of technological evolution. The need to study and understand the process of technology evolution is crucial in today's rapidly changing world. As technology advances at an unprecedented pace, it is essential to develop a personal paradigm for perceiving the technological process of developing modern knowledge. This involves recognizing the interconnectedness of various disciplines and the need for a holistic approach to understanding the world around us. By studying and applying the principles of abstract algebra, we can gain a deeper appreciation for the beauty and power of mathematics, as well as its practical applications in fields such as computer science, cryptography, and coding theory.
Четвертое издание «Введение в абстрактную алгебру» продолжает обеспечивать доступный подход к основным структурам абстрактной алгебры, группам, кольцам и полям. Уникальное изложение книги помогает читателям перейти к абстрактной теории, представляя конкретные примеры индукции, теории чисел, целых чисел по модулю n и перестановок до определения абстрактных структур. Читатели могут немедленно начать выполнять вычисления, используя абстрактные концепции, которые более подробно разрабатываются позже в тексте. Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems. Это издание включает новые разделы о симметриях геометрических преобразований и теории представлений конечных групп, а также расширенный охват алгебраических приложений. Текст написан на уровне, подходящем для студентов, которые прошли от одного до двух лет математики в колледже, и он подчеркивает важность понимания процесса технологической эволюции. Необходимость изучения и понимания процесса эволюции технологий имеет решающее значение в современном быстро меняющемся мире. Поскольку технологии развиваются беспрецедентными темпами, важно разработать личную парадигму восприятия технологического процесса развития современных знаний. Это предполагает признание взаимосвязанности различных дисциплин и необходимость целостного подхода к пониманию окружающего мира. Изучая и применяя принципы абстрактной алгебры, мы можем глубже оценить красоту и мощь математики, а также её практические применения в таких областях, как информатика, криптография и теория кодирования.
Quatrième édition « Introduction à l'algèbre abstraite » continue de fournir une approche accessible des structures de base de l'algèbre abstraite, des groupes, des anneaux et des champs. La présentation unique du livre aide les lecteurs à passer à la théorie abstraite en présentant des exemples concrets d'induction, de théorie des nombres, de nombres entiers selon le module n et de permutations avant de définir des structures abstraites. s lecteurs peuvent immédiatement commencer à faire des calculs en utilisant des concepts abstraits qui sont développés plus en détail plus loin dans le texte. Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems. Cette édition comprend de nouvelles sections sur les symétries des transformations géométriques et la théorie des représentations des groupes finis, ainsi qu'une couverture étendue des applications algébriques. texte est écrit à un niveau approprié pour les étudiants qui ont passé une à deux années de mathématiques à l'université, et il souligne l'importance de comprendre le processus d'évolution technologique. La nécessité d'étudier et de comprendre le processus d'évolution des technologies est essentielle dans le monde en mutation rapide d'aujourd'hui. Comme la technologie évolue à un rythme sans précédent, il est important de développer un paradigme personnel de perception du processus technologique du développement des connaissances modernes. Cela implique de reconnaître l'interdépendance des différentes disciplines et la nécessité d'une approche globale de la compréhension du monde qui les entoure. En étudiant et en appliquant les principes de l'algèbre abstraite, nous pouvons mieux apprécier la beauté et la puissance des mathématiques, ainsi que ses applications pratiques dans des domaines tels que l'informatique, la cryptographie et la théorie du codage.
La cuarta edición de «Introducción al álgebra abstracta» continúa proporcionando un enfoque accesible a las estructuras básicas del álgebra abstracta, grupos, anillos y campos. La presentación única del libro ayuda a los lectores a pasar a la teoría abstracta, presentando ejemplos específicos de inducción, teoría de números, números enteros por módulo n y permutaciones antes de definir las estructuras abstractas. lectores pueden comenzar inmediatamente a realizar cálculos utilizando conceptos abstractos que se desarrollan con más detalle más adelante en el texto. Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems. Esta edición incluye nuevas secciones sobre simetrías de transformaciones geométricas y teoría de representaciones de grupos finitos, así como un alcance ampliado de aplicaciones algebraicas. texto está escrito a un nivel adecuado para los estudiantes que han pasado de uno a dos de matemáticas en la universidad, y destaca la importancia de entender el proceso de evolución tecnológica. La necesidad de estudiar y comprender el proceso de evolución de la tecnología es crucial en un mundo que cambia rápidamente. A medida que la tecnología evoluciona a un ritmo sin precedentes, es importante desarrollar un paradigma personal para percibir el proceso tecnológico del desarrollo del conocimiento moderno. Esto implica reconocer la interrelación de las diferentes disciplinas y la necesidad de un enfoque holístico para entender el mundo que nos rodea. Al estudiar y aplicar los principios del álgebra abstracta, podemos apreciar más profundamente la belleza y el poder de las matemáticas, así como sus aplicaciones prácticas en campos como la informática, la criptografía y la teoría de la codificación.
A quarta edição de «Introdução à álgebra abstrata» continua a fornecer uma abordagem acessível às estruturas básicas da álgebra abstrata, grupos, anéis e campos. O enunciado único do livro ajuda os leitores a avançar para a teoria abstrata, apresentando exemplos específicos de indução, teoria de números, números inteiros no módulo n e mudanças antes da definição de estruturas abstratas. Os leitores podem começar imediatamente a fazer os cálculos usando conceitos abstratos que são desenvolvidos mais tarde no texto. Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems. Esta edição inclui novas seções sobre simetrias de transformações geométricas e teoria de representações de grupos finais, além de abrangência avançada de aplicações álgebricas. O texto foi escrito em um nível adequado para estudantes que passaram de um a dois anos de matemática na faculdade, e enfatiza a importância de entender o processo de evolução tecnológica. A necessidade de explorar e compreender a evolução da tecnologia é crucial em um mundo em rápida mudança. Como a tecnologia evolui a um ritmo sem precedentes, é importante desenvolver um paradigma pessoal para a percepção do processo tecnológico de desenvolvimento do conhecimento moderno. Isso implica reconhecer a interconexão entre as diferentes disciplinas e a necessidade de uma abordagem integral da compreensão do mundo. Ao estudar e aplicar os princípios da álgebra abstrata, podemos avaliar a beleza e o poder da matemática, bem como suas aplicações práticas em áreas como informática, criptografia e teoria da codificação.
La quarta edizione di «Introduzione all'algebra astratta» continua a fornire un approccio accessibile alle principali strutture dell'algebra astratta, gruppi, anelli e campi. La descrizione univoca del libro aiuta i lettori a passare alla teoria astratta, presentando esempi concreti di induzione, teoria dei numeri, numeri interi del modulo n e riorganizzazioni prima di definire le strutture astratte. I lettori possono iniziare immediatamente a fare calcoli utilizzando concetti astratti che vengono sviluppati più in dettaglio nel testo. Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems. Questa edizione include nuove sezioni sulle simmetrie delle trasformazioni geometriche e la teoria delle rappresentazioni dei gruppi finali, oltre ad una copertura estesa delle applicazioni algebriche. Il testo è scritto su un livello adatto per gli studenti che hanno trascorso uno o due anni di matematica al college, e sottolinea l'importanza di comprendere il processo di evoluzione tecnologica. La necessità di studiare e comprendere l'evoluzione della tecnologia è fondamentale in un mondo in continua evoluzione. Poiché la tecnologia sta evolvendo a un ritmo senza precedenti, è importante sviluppare un paradigma personale per la percezione del processo tecnologico di sviluppo della conoscenza moderna. Ciò implica il riconoscimento dell'interconnessione tra diverse discipline e la necessità di un approccio olistico alla comprensione del mondo circostante. Studiando e applicando i principi dell'algebra astratta, possiamo apprezzare a fondo la bellezza e la potenza della matematica e le sue applicazioni pratiche in settori quali l'informatica, la crittografia e la teoria della codifica.
Die vierte Ausgabe der „Einführung in die abstrakte Algebra“ bietet weiterhin einen zugänglichen Zugang zu den grundlegenden Strukturen der abstrakten Algebra, Gruppen, Ringen und Feldern. Die einzigartige Präsentation des Buches hilft den sern, zur abstrakten Theorie überzugehen, indem sie konkrete Beispiele für Induktion, Zahlentheorie, ganze Zahlen modulo n und Permutationen vor der Definition abstrakter Strukturen präsentiert. Die ser können sofort mit der Berechnung beginnen, indem sie abstrakte Konzepte verwenden, die später im Text detaillierter entwickelt werden. Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems. Diese Ausgabe enthält neue Abschnitte über die Symmetrien der geometrischen Transformationen und die Theorie der endlichen Gruppendarstellungen sowie eine erweiterte Abdeckung der algebraischen Anwendungen. Der Text ist auf einem Niveau geschrieben, das für Studenten geeignet ist, die ein bis zwei Jahre Mathematik am College absolviert haben, und er betont, wie wichtig es ist, den Prozess der technologischen Evolution zu verstehen. Die Notwendigkeit, den Prozess der Technologieentwicklung zu untersuchen und zu verstehen, ist in der heutigen schnelllebigen Welt von entscheidender Bedeutung. Da sich die Technologie in einem beispiellosen Tempo entwickelt, ist es wichtig, ein persönliches Paradigma für die Wahrnehmung des technologischen Prozesses der Entwicklung des modernen Wissens zu entwickeln. Dies beinhaltet die Anerkennung der Interkonnektivität verschiedener Disziplinen und die Notwendigkeit eines ganzheitlichen Ansatzes zum Verständnis der umgebenden Welt. Durch das Studium und die Anwendung der Prinzipien der abstrakten Algebra können wir die Schönheit und Kraft der Mathematik sowie ihre praktischen Anwendungen in Bereichen wie Informatik, Kryptographie und Codierungstheorie besser einschätzen.
Czwarte wydanie „Wprowadzenie do abstrakcyjnej algebry” nadal zapewnia dostępne podejście do podstawowych struktur algebry abstrakcyjnej, grup, pierścieni i pól. Unikalna ekspozycja książki pomaga czytelnikom przejść do abstrakcyjnej teorii przedstawiając konkretne przykłady indukcji, teorii liczby, modulo n liczb i permutacji przed zdefiniowaniem abstrakcyjnych struktur. Czytelnicy mogą natychmiast rozpocząć wykonywanie obliczeń za pomocą koncepcji abstrakcyjnych, które są opracowywane bardziej szczegółowo w późniejszym tekście. Wprowadzenie do Abstract Algebra, wydanie czwarte, zapewnia kompleksowy przegląd tematu, w tym niezbędnego materiału tła, koncentrując się na podstawowych koncepcjach i teoriach. Wydanie to obejmuje nowe sekcje symetrii transformacji geometrycznych i teorii reprezentacji grup skończonych, a także rozszerzony zakres zastosowań algebraicznych. Tekst jest napisany na poziomie odpowiednim dla studentów, którzy ukończyli jeden do dwóch lat matematyki college, i podkreśla znaczenie zrozumienia procesu ewolucji technologicznej. Potrzeba badania i zrozumienia ewolucji technologii jest kluczowa w dzisiejszym szybko zmieniającym się świecie. Ponieważ technologie rozwijają się w bezprecedensowym tempie, ważne jest opracowanie osobistego paradygmatu postrzegania technologicznego procesu rozwoju nowoczesnej wiedzy. Oznacza to uznanie wzajemnych powiązań różnych dyscyplin i potrzebę holistycznego podejścia do zrozumienia otaczającego nas świata. Studiując i stosując zasady algebry abstrakcyjnej, możemy jeszcze bardziej docenić piękno i moc matematyki, a także jej praktyczne zastosowania w takich dziedzinach jak informatyka, kryptografia i teoria kodowania.
המהדורה הרביעית של ”מבוא לאלגברה מופשטת” ממשיכה לספק גישה נגישה למבנים הבסיסיים של אלגברה מופשטת, קבוצות, טבעות ושדות. האקספוזיציה הייחודית של הספר עוזרת לקוראים לעבור לתאוריה מופשטת על ידי הצגת דוגמאות קונקרטיות של אינדוקציה, תורת המספרים, מודולו n מספרים שלמים ופרמוטציות לפני הגדרת מבנים מופשטים. הקוראים יכולים להתחיל מיד לבצע חישובים באמצעות מושגים מופשטים המתפתחים ביתר פירוט מאוחר יותר בטקסט. מבוא לאלגברה מופשטת, המהדורה הרביעית, מספק סקירה מקיפה של הנושא, כולל חומר הרקע ההכרחי, תוך התמקדות במושגים ובמשפטים החיוניים. מהדורה זו כוללת קטעים חדשים על סימטריות של טרנספורמציות גאומטריות ותורת הייצוג של קבוצות סופיות, וכן כיסוי מורחב של יישומים אלגבריים. הטקסט נכתב ברמה המתאימה לסטודנטים שסיימו שנה עד שנתיים במתמטיקה, והוא מדגיש את החשיבות של הבנת תהליך האבולוציה הטכנולוגית. הצורך ללמוד ולהבין את התפתחות הטכנולוגיה הוא קריטי בעולם המשתנה במהירות. מאחר שטכנולוגיות מתפתחות בקצב חסר תקדים, חשוב לפתח פרדיגמה אישית לתפיסה של התהליך הטכנולוגי של התפתחות הידע המודרני. זה מרמז על הכרה בקישוריות בין תחומים שונים והצורך בגישה הוליסטית להבנת העולם הסובב אותנו. על ידי לימוד ויישום עקרונות האלגברה המופשטת, אנו יכולים להעריך עוד יותר את היופי והכוח של המתמטיקה, כמו גם את היישומים המעשיים שלה בתחומים כמו מדעי המחשב, קריפטוגרפיה ותורת הקידוד.''
Dördüncü baskı "Introduction to Abstract Algebra" soyut cebir, gruplar, halkalar ve alanların temel yapılarına erişilebilir bir yaklaşım sunmaya devam ediyor. Kitabın benzersiz açıklaması, soyut yapıları tanımlamadan önce indüksiyon, sayı teorisi, modulo n tamsayıları ve permütasyonların somut örneklerini sunarak okuyucuların soyut teoriye geçmelerine yardımcı olur. Okuyucular, daha sonra metinde daha ayrıntılı olarak geliştirilen soyut kavramları kullanarak hesaplamalar yapmaya hemen başlayabilir. Özet Cebire Giriş, Dördüncü Baskı, temel kavramlara ve teoremlere odaklanırken, gerekli arka plan materyali de dahil olmak üzere konuya kapsamlı bir genel bakış sağlar. Bu baskı, geometrik dönüşümlerin simetrileri ve sonlu grupların temsil teorisi ile cebirsel uygulamaların genişletilmiş kapsamı hakkında yeni bölümler içermektedir. Metin, bir ila iki yıllık üniversite matematiğini tamamlayan öğrenciler için uygun bir seviyede yazılmıştır ve teknolojik evrim sürecini anlamanın önemini vurgulamaktadır. Teknolojinin evrimini inceleme ve anlama ihtiyacı, günümüzün hızla değişen dünyasında kritik öneme sahiptir. Teknolojiler benzeri görülmemiş bir hızda geliştiğinden, modern bilginin gelişiminin teknolojik sürecinin algılanması için kişisel bir paradigma geliştirmek önemlidir. Bu, farklı disiplinlerin birbirine bağlılığının tanınması ve çevremizdeki dünyayı anlamak için bütünsel bir yaklaşıma duyulan ihtiyacı ifade eder. Soyut cebirin ilkelerini inceleyerek ve uygulayarak, matematiğin güzelliğini ve gücünü ve bilgisayar bilimi, kriptografi ve kodlama teorisi gibi alanlardaki pratik uygulamalarını daha da takdir edebiliriz.
لا تزال الطبعة الرابعة «مقدمة إلى الجبر التجريدي» توفر نهجا يسهل الوصول إليه للهياكل الأساسية للجبر المجرد والمجموعات والحلقات والحقول. يساعد العرض الفريد للكتاب القراء على الانتقال إلى النظرية التجريدية من خلال تقديم أمثلة ملموسة للتحريض ونظرية الأعداد والأعداد الصحيحة والتبديل قبل تحديد الهياكل التجريدية. يمكن للقراء البدء فورًا في إجراء الحسابات باستخدام مفاهيم مجردة يتم تطويرها بمزيد من التفصيل لاحقًا في النص. تقدم مقدمة الجبر التجريدي، الطبعة الرابعة، لمحة عامة شاملة عن الموضوع، بما في ذلك المواد الأساسية اللازمة، مع التركيز على المفاهيم والنظريات الأساسية. تتضمن هذه الطبعة أقسامًا جديدة حول تناظرات التحولات الهندسية ونظرية التمثيل للمجموعات المحدودة، بالإضافة إلى تغطية موسعة للتطبيقات الجبرية. النص مكتوب بمستوى مناسب للطلاب الذين أكملوا سنة إلى سنتين من الرياضيات الجامعية، ويؤكد على أهمية فهم عملية التطور التكنولوجي. إن الحاجة إلى دراسة وفهم تطور التكنولوجيا أمر بالغ الأهمية في عالم اليوم سريع التغير. وبما أن التكنولوجيات تتطور بوتيرة لم يسبق لها مثيل، فمن المهم وضع نموذج شخصي لتصور العملية التكنولوجية لتطور المعرفة الحديثة. وهذا يعني الاعتراف بالترابط بين مختلف التخصصات والحاجة إلى نهج شامل لفهم العالم من حولنا. من خلال دراسة وتطبيق مبادئ الجبر المجرد، يمكننا أن نقدر بشكل أكبر جمال وقوة الرياضيات، فضلاً عن تطبيقاتها العملية في مجالات مثل علوم الكمبيوتر وعلم التشفير ونظرية الترميز.
제 4 판 "추상 대수 소개" 는 추상 대수, 그룹, 고리 및 필드의 기본 구조에 대한 접근 가능한 접근 방식을 계속 제공합니다. 이 책의 독특한 설명은 독자들이 추상 구조를 정의하기 전에 유도, 수 이론, 모듈로 n 정수 및 순열의 구체적인 예를 제시함으로써 추상 이론으로 이동하는 데 도움이됩니다. 독자는 나중에 텍스트에서 더 자세히 개발 된 추상 개념을 사용하여 계산을 즉시 시작할 수 있습니다. Fourth Edition의 Abstract Algebra 소개는 필수 개념과 이론에 중점을 두면서 필요한 배경 자료를 포함하여 주제에 대한 포괄적 인 개요를 제공합니다. 이 버전에는 기하학적 변환 대칭 및 유한 그룹의 표현 이론에 대한 새로운 섹션과 대수 응용 프로그램의 확장 된 범위가 포함되어 있습니다. 이 텍스트는 1-2 년의 대학 수학을 마친 학생들에게 적합한 수준으로 작성되었으며 기술 진화 과정을 이해하는 것의 중요성을 강조합니다. 기술의 진화를 연구하고 이해해야 할 필요성은 오늘날 급변하는 세상에서 매우 중요합니다. 기술은 전례없는 속도로 발전하고 있기 때문에 현대 지식 개발의 기술 프로세스에 대한 인식을위한 개인 패러다임을 개발하는 것이 중요합니다. 이것은 다양한 분야의 상호 연결성에 대한 인식과 주변 세계를 이해하기위한 전체 론적 접근의 필요성을 의미합니다. 추상 대수의 원리를 연구하고 적용함으로써 수학의 아름다움과 힘, 컴퓨터 과학, 암호화 및 코딩 이론과 같은 분야의 실제 응용을 더욱 높이 평가할 수 있습니다.
第4版「抽象代数学への入門」は、抽象代数、群、環、場の基本構造にアクセス可能なアプローチを提供し続けています。本のユニークな博覧会は、読者が抽象構造を定義する前に、誘導、数値理論、モジュロn整数、および順列の具体的な例を提示することによって、抽象理論に移行するのに役立ちます。読者は、テキストの後半でより詳細に開発された抽象的な概念を使用してすぐに計算を実行することができます。Abstract Algebra、 Fourth Editionは、本質的な概念と定理に焦点を当てながら、必要な背景材料を含む主題の包括的な概要を提供します。この版には、幾何学的変換の対称性と有限群の表現理論に関する新しいセクションと、代数応用の拡張された範囲が含まれている。このテキストは、1から2の大学数学を修了した学生にふさわしいレベルで書かれており、技術進化のプロセスを理解することの重要性を強調しています。テクノロジーの進化を研究し理解する必要性は、今日の急速に変化する世界において極めて重要です。技術はかつてないペースで発展しているので、現代の知識の発展の技術プロセスの認識のための個人的なパラダイムを開発することが重要です。これは、異なる分野の相互接続性の認識と、私たちの周りの世界を理解するための全体的なアプローチの必要性を意味します。抽象代数学の原理を研究し応用することで、数学の美しさと力、計算機科学、暗号学、コーディング理論などの分野での実用的な応用をさらに理解することができます。
第四版「抽象代數簡介」繼續為抽象代數的基本結構,組,環和字段提供可用的方法。這本書的獨特陳述有助於讀者轉向抽象理論,在定義抽象結構之前提供歸納,數論,整數n和排列的特定示例。讀者可以立即開始使用抽象概念進行計算,這些概念在稍後的文本中得到了更詳細的闡述。Introduction to Abstract Algebra, Fourth Edition, provides a comprehensive overview of the subject, including the necessary background material, while focusing on the essential concepts and theorems.該版本包括有關幾何變換的對稱性和有限組表示理論的新部分,以及擴展的代數應用範圍。該文本的編寫水平適合在大學學習一到兩數學的學生,並強調了解技術進化過程的重要性。在當今瞬息萬變的世界中,探索和理解技術演變過程的必要性至關重要。隨著技術以前所未有的速度發展,重要的是要發展個人範式,以感知現代知識的技術發展過程。這意味著承認不同學科之間的相互關聯,以及需要采取全面的辦法來理解環境。通過研究和應用抽象代數的原理,我們可以更深入地了解數學的美麗和力量,以及它在計算機科學,密碼學和編碼理論等領域的實際應用。
