BOOKS - SCIENCE AND STUDY - Equivariant Topology and Derived Algebra
Equivariant Topology and Derived Algebra - Scott Balchin 2022 PDF Cambridge University Press BOOKS SCIENCE AND STUDY
ECO~15 kg CO²

1 TON

Views
42933

Telegram
 
Equivariant Topology and Derived Algebra
Author: Scott Balchin
Year: 2022
Pages: 356
Format: PDF
File size: 2 MB
Language: ENG



Pay with Telegram STARS
, who was an influential figure in the field of topology. The book 'Equivariant Topology and Derived Algebra' is a comprehensive collection of research papers that showcases the work of Professor J P C Greenlees, a renowned figure in the field of topology. The book is divided into two main parts: the first part focuses on equivariant topology, while the second part delves into derived algebra. The papers in this volume reflect Professor Greenlees's wide-ranging interests and contributions to the field, covering topics such as geometric and topological invariants, representation theory, and the interplay between topology and geometry. The book begins with an introduction that provides an overview of Professor Greenlees's work and its significance in the context of modern mathematics and science. This is followed by a series of chapters that explore various aspects of equivariant topology, including the study of symmetry groups, equivariant cohomology, and the use of algebraic tools to understand geometric phenomena. The first part of the book concludes with a discussion on the relationship between equivariant topology and other areas of mathematics, such as differential geometry and algebraic geometry. The second part of the book shifts the focus to derived algebra, exploring the connections between algebraic structures and geometric phenomena. The chapters in this section cover a range of topics, from the study of Lie algebras and their representations to the application of homological algebra in physics. This section also includes a comprehensive survey of the state of the art in the field of derived algebra, highlighting recent advances and open problems. Throughout the book, the authors strive to present the material in a way that is accessible to both specialists and non-specialists, making it an excellent resource for researchers and students looking to gain a deeper understanding of the field. The text is written in a clear and concise manner, with technical terms and concepts explained in an accessible way, making it easier for readers to grasp the key ideas and techniques.
, который был влиятельной фигурой в области топологии. Книга 'Equivariant Topology and Derived Algebra'является исчерпывающим собранием исследовательских работ, которые демонстрируют работу профессора J P C Greenlees, известной фигуры в области топологии. Книга разделена на две основные части: первая часть посвящена эквивариантной топологии, а вторая часть углубляется в производную алгебру. Статьи в этом томе отражают широкие интересы профессора Гринлиса и его вклад в эту область, охватывая такие темы, как геометрические и топологические инварианты, теория представлений и взаимодействие между топологией и геометрией. Книга начинается с введения, в котором представлен обзор работ профессора Гринлиса и их значение в контексте современной математики и естественных наук. Далее следует ряд глав, исследующих различные аспекты эквивариантной топологии, включая изучение групп симметрии, эквивариантных когомологий и использование алгебраических инструментов для понимания геометрических явлений. Первая часть книги завершается обсуждением взаимосвязи между эквивариантной топологией и другими областями математики, такими как дифференциальная геометрия и алгебраическая геометрия. Вторая часть книги смещает фокус на производную алгебру, исследуя связи между алгебраическими структурами и геометрическими явлениями. Главы этого раздела охватывают ряд тем, от изучения алгебр Ли и их представлений до применения гомологической алгебры в физике. Этот раздел также включает в себя всесторонний обзор состояния техники в области производной алгебры, освещая последние достижения и открытые проблемы. На протяжении всей книги авторы стремятся представить материал так, чтобы он был доступен как специалистам, так и неспециалистам, что делает его отличным ресурсом для исследователей и студентов, стремящихся получить более глубокое понимание этой области. Текст написан в ясной и сжатой манере, с техническими терминами и понятиями, объяснёнными доступным способом, облегчающим читателям понимание ключевых идей и приёмов.
, qui était une figure influente dans le domaine de la topologie. livre « Equivariant Topology and Derived Algebra » est une collection exhaustive de travaux de recherche qui illustrent les travaux du professeur J P C Greenlees, une figure célèbre dans le domaine de la topologie. livre est divisé en deux parties principales : la première partie est consacrée à la topologie équivariante, et la deuxième partie est approfondie dans l'algèbre dérivée. s articles de ce volume reflètent les intérêts généraux du professeur Greenlis et sa contribution dans ce domaine, couvrant des sujets tels que les invariants géométriques et topologiques, la théorie des représentations et l'interaction entre topologie et géométrie. livre commence par une introduction qui donne un aperçu des travaux du professeur Greenlis et de leur importance dans le contexte des mathématiques modernes et des sciences naturelles. Ensuite, un certain nombre de chapitres examinent différents aspects de la topologie équivariante, y compris l'étude des groupes de symétrie, des cohomologies équivariantes et l'utilisation d'outils algébriques pour comprendre les phénomènes géométriques. La première partie du livre se termine par une discussion sur la relation entre la topologie équivariante et d'autres domaines des mathématiques, tels que la géométrie différentielle et la géométrie algébrique. La deuxième partie du livre déplace l'accent sur l'algèbre dérivée en examinant les liens entre les structures algébriques et les phénomènes géométriques. s chapitres de cette section couvrent un certain nombre de sujets, de l'étude des algèbres de e et de leurs représentations à l'application de l'algèbre homologique en physique. Cette section comprend également un aperçu complet de l'état de la technique dans le domaine de l'algèbre dérivée, mettant en évidence les progrès récents et les problèmes ouverts. Tout au long du livre, les auteurs s'efforcent de présenter le matériel afin qu'il soit accessible à la fois aux spécialistes et aux non-spécialistes, ce qui en fait une excellente ressource pour les chercheurs et les étudiants qui cherchent à mieux comprendre le domaine. texte est écrit de manière claire et concise, avec des termes techniques et des concepts expliqués d'une manière accessible qui permet aux lecteurs de comprendre les idées et les techniques clés.
, que fue una figura influyente en el campo de la topología. libro 'Equivariant Topology and Derived Algebra'es una exhaustiva colección de trabajos de investigación que demuestran el trabajo del profesor J P C Greenlees, una figura conocida en el campo de la topología. libro se divide en dos partes principales: la primera parte trata de la topología equivariante y la segunda parte profundiza en la derivada del álgebra. artículos de este volumen reflejan los amplios intereses del profesor Greenlis y sus contribuciones a este campo, abarcando temas como invariantes geométricos y topológicos, teoría de representaciones e interacción entre topología y geometría. libro comienza con una introducción que presenta una visión general de los trabajos del profesor Greenlis y su importancia en el contexto de las matemáticas modernas y las ciencias naturales. sigue una serie de capítulos que exploran diversos aspectos de la topología equivariante, incluyendo el estudio de grupos de simetría, cohomologías equivariantes y el uso de instrumentos algebraicos para entender fenómenos geométricos. La primera parte del libro concluye con una discusión sobre la relación entre la topología equivariante y otras áreas de las matemáticas, como la geometría diferencial y la geometría algebraica. La segunda parte del libro cambia el enfoque hacia la derivada del álgebra, investigando las relaciones entre las estructuras algebraicas y los fenómenos geométricos. capítulos de esta sección abarcan una serie de temas, desde el estudio de las álgebras de e y sus representaciones hasta la aplicación del álgebra homológica en física. Esta sección también incluye una revisión completa del estado de la técnica en el campo de la derivada del álgebra, destacando los últimos avances y desafíos abiertos. A lo largo del libro, los autores pretenden presentar el material de forma que esté a disposición tanto de especialistas como de no especialistas, lo que lo convierte en un excelente recurso para investigadores y estudiantes que buscan una mayor comprensión de este campo. texto está escrito de manera clara y concisa, con términos y conceptos técnicos explicados de una manera accesible que facilita a los lectores la comprensión de ideas y técnicas clave.
, que era uma figura influente na topologia. O livro «Equivariant Topology and Derived Algebra» é uma reunião completa de pesquisa que mostra o trabalho do professor J P C Greenlees, uma figura conhecida na topologia. O livro é dividido em duas partes principais: a primeira parte é dedicada à topologia equivariante e a segunda parte é aprofundada na álgebra derivada. Os artigos deste volume refletem os amplos interesses do professor Greenlis e suas contribuições para este campo, abrangendo temas como invariantes geométricos e topológicos, teoria de representações e interação entre topologia e geometria. O livro começa com uma introdução que apresenta uma revisão do trabalho do professor Greenlis e sua importância no contexto da matemática e das ciências naturais modernas. Seguem-se vários capítulos que exploram vários aspectos da topologia equivariante, incluindo o estudo de grupos de simetria, cogomologias equivariantes e o uso de ferramentas álgebricas para compreender fenômenos geométricos. A primeira parte do livro termina com uma discussão sobre a relação entre a topologia equivariante e outras áreas da matemática, como a geometria diferencial e a geometria álgebraica. A segunda parte do livro move o foco para a álgebra derivada, explorando os laços entre as estruturas álgebricas e os fenômenos geométricos. Os capítulos desta seção abrangem uma série de temas, desde o estudo da álgebra de e e suas percepções até a aplicação da álgebra homóloga na física. Esta seção também inclui uma revisão abrangente do estado da técnica de álgebra derivada, cobrindo os avanços recentes e os problemas abertos. Ao longo do livro, os autores procuram apresentar o material para que seja acessível tanto para especialistas quanto para não-especialistas, o que o torna um excelente recurso para pesquisadores e estudantes que buscam uma compreensão mais profunda desta área. O texto é escrito de uma forma clara e comprimida, com termos técnicos e conceitos explicados de uma maneira acessível que facilita a compreensão dos leitores de ideias e técnicas fundamentais.
, che era una figura influente nel campo della topologia. Equivariant Topology and Derived Algebra è una raccolta completa di studi che dimostrano il lavoro di J P C Greenlees, una figura nota nel campo della topologia. Il libro è suddiviso in due parti principali: la prima è dedicata alla topologia equivariante e la seconda parte viene approfondita in algebra derivata. Gli articoli di questo volume riflettono gli ampi interessi del professor Greenlis e il suo contributo in questo campo, trattando temi quali gli invarianti geometrici e topologici, la teoria delle rappresentazioni e l'interazione tra topologia e geometria. Il libro inizia con un'introduzione che fornisce una panoramica del lavoro del professor Greenlis e il loro significato nel contesto della matematica moderna e delle scienze naturali. Ci sono poi alcuni capitoli che esaminano diversi aspetti della topologia equivariante, tra cui lo studio di gruppi di simmetria, cogomologie equivarianti e l'uso di strumenti algebrici per comprendere i fenomeni geometrici. La prima parte del libro si conclude con una discussione sulla relazione tra la topologia equivariante e altre aree della matematica, come la geometria differenziale e la geometria algebrica. La seconda parte del libro sposta il focus sull'algebra derivata, esplorando i legami tra le strutture algebriche e i fenomeni geometrici. I capitoli di questa sezione comprendono una serie di argomenti che vanno dallo studio dell'algebra di Li alle loro percezioni fino all'applicazione dell'algebra omologa nella fisica. Questa sezione include anche una panoramica completa dello stato della tecnica nel campo dell'algebra derivata, mettendo in luce gli ultimi progressi e i problemi aperti. Durante tutto il libro, gli autori cercano di presentare il materiale in modo che sia accessibile a professionisti e non specialisti, rendendolo un'ottima risorsa per ricercatori e studenti che cercano di ottenere una maggiore comprensione di questo campo. Il testo è scritto in modo chiaro e compresso, con termini tecnici e concetti spiegati in modo accessibile, per facilitare la comprensione di idee e tecniche chiave da parte dei lettori.
, die eine einflussreiche Figur auf dem Gebiet der Topologie war. Das Buch 'Equivariant Topology and Derived Algebra'ist eine umfassende Sammlung von Forschungsarbeiten, die die Arbeit von Professor J P C Greenlees, einer bekannten Figur auf dem Gebiet der Topologie, demonstrieren. Das Buch ist in zwei Hauptteile unterteilt: Der erste Teil widmet sich der äquivarianten Topologie und der zweite Teil vertieft sich in die abgeleitete Algebra. Die Artikel in diesem Band spiegeln die breiten Interessen von Professor Greenlis und seine Beiträge zu diesem Bereich wider und umfassen Themen wie geometrische und topologische Invarianten, die Theorie der Repräsentation und das Zusammenspiel von Topologie und Geometrie. Das Buch beginnt mit einer Einführung, die einen Überblick über die Arbeit von Professor Greenlis und ihre Bedeutung im Kontext der modernen Mathematik und Naturwissenschaften gibt. Es folgt eine Reihe von Kapiteln, die verschiedene Aspekte der äquivarianten Topologie untersuchen, einschließlich der Untersuchung von Symmetriegruppen, äquivarianten Kohomologien und der Verwendung algebraischer Instrumente zum Verständnis geometrischer Phänomene. Der erste Teil des Buches schließt mit einer Diskussion der Beziehung zwischen äquivarianter Topologie und anderen Bereichen der Mathematik wie Differentialgeometrie und algebraische Geometrie. Der zweite Teil des Buches verlagert den Fokus auf die abgeleitete Algebra, indem er die Zusammenhänge zwischen algebraischen Strukturen und geometrischen Phänomenen untersucht. Die Kapitel dieses Abschnitts decken eine Reihe von Themen ab, vom Studium der Lie-Algebren und ihrer Darstellungen bis hin zur Anwendung der homologischen Algebra in der Physik. Dieser Abschnitt enthält auch einen umfassenden Überblick über den Stand der Technik im Bereich der abgeleiteten Algebra, wobei die neuesten Fortschritte und offenen Probleme hervorgehoben werden. Im Laufe des Buches bemühen sich die Autoren, das Material so zu präsentieren, dass es sowohl für Fachleute als auch für Laien zugänglich ist, was es zu einer großartigen Ressource für Forscher und Studenten macht, die ein tieferes Verständnis des Feldes erlangen möchten. Der Text ist klar und prägnant geschrieben, mit Fachbegriffen und Konzepten, die auf zugängliche Weise erklärt werden und es den sern erleichtern, die wichtigsten Ideen und Techniken zu verstehen.
, który był wpływową postacią w dziedzinie topologii. Książka „Equivariant Topology and Derived Algebra” to kompleksowy zbiór prac badawczych, które pokazują pracę profesora J P C Greenleesa, znanej postaci z dziedziny topologii. Księga podzielona jest na dwie główne części: pierwsza część poświęcona jest niejednoznacznej topologii, a druga - algebry pochodnej. Artykuły zawarte w tym tomie odzwierciedlają ogólne zainteresowania i wkład profesora Greenleesa w tę dziedzinę, obejmujące takie tematy jak: geometryczne i topologiczne niezmienne, teoria reprezentacji oraz interakcje między topologią a geometrią. Książka rozpoczyna się od wprowadzenia, które zawiera przegląd pracy profesora Greenleesa i jego znaczenia w kontekście nowoczesnej matematyki i nauki. Szereg rozdziałów śledzi różne aspekty topologii niejednoznacznej, w tym badania grup symetrycznych, jednoznacznej kohomologii oraz użycie narzędzi algebraicznych do zrozumienia zjawisk geometrycznych. Pierwsza część książki kończy się dyskusją na temat związku między topologią niejednoznaczną a innymi dziedzinami matematyki, takimi jak geometria różnicowa i geometria algebraiczna. Druga część książki skupia się na algebrze pochodnej, badając powiązania między strukturami algebraicznymi a zjawiskami geometrycznymi. Rozdziały w tej sekcji obejmują szereg tematów, począwszy od badania algebras kłamstwa i ich reprezentacji do zastosowania algebry homologicznej w fizyce. Sekcja ta zawiera również kompleksowy przegląd stanu wiedzy w dziedzinie algebry pochodnej, podkreślając ostatnie postępy i otwarte problemy. W całej książce autorzy starają się prezentować materiały tak, aby były one dostępne zarówno dla specjalistów, jak i dla osób niebędących specjalistami, co czyni je doskonałym zasobem dla naukowców i studentów dążących do głębszego zrozumienia tej dziedziny. Tekst jest napisany w jasny i zwięzły sposób, z technicznymi terminami i pojęciami wyjaśnionymi w dostępny sposób, który ułatwia czytelnikom zrozumienie kluczowych pomysłów i technik.
, שהיה דמות בעלת השפעה בתחום הטופולוגיה. הספר ”Topology Equivariant and Derived Algebra” הוא אוסף מקיף של עבודות מחקר המדגימות את עבודתו של פרופסור ג 'יי פי גרינליס, דמות ידועה בתחום הטופולוגיה. הספר מחולק לשני חלקים עיקריים: החלק הראשון מוקדש לטופולוגיה שוויונית, והחלק השני מתעמק באלגברה נגזרת. המאמרים בכרך זה משקפים את תחומי העניין והתרומה הרחבים של פרופ 'גרינליס לתחום, העוסקים בנושאים כמו גיאומטריה וטופולוגיה אינווריאנטים, תיאוריית הייצוג והאינטראקציה בין טופולוגיה לגאומטריה. הספר מתחיל בהקדמה המספקת סקירה של עבודתו של פרופ 'גרינליס וחשיבותו בהקשר של מתמטיקה ומדע מודרניים. מספר פרקים עוקבים אחר היבטים שונים של טופולוגיה שוויונית, כולל חקר קבוצות סימטריה, קוהומולוגיה אקוויווריאנטית ושימוש בכלים אלגבריים להבנת תופעות גאומטריות. החלק הראשון של הספר מסתיים בדיון על הקשר בין טופולוגיה שוויונית לתחומים אחרים במתמטיקה, כמו גאומטריה דיפרנציאלית וגאומטריה אלגברית. החלק השני של הספר מתמקד באלגברה נגזרת, החוקרת את הקשרים בין מבנים אלגבריים ותופעות גאומטריות. הפרקים בחלק זה מכסים מגוון נושאים, החל בחקר אלגברות שקר וכלה ביישום אלגברה הומולוגית בפיזיקה. סעיף זה כולל גם סקירה מקיפה של מצב האמנות בתחום האלגברה הנגזרת, הדגשת ההתקדמות האחרונה ובעיות פתוחות. לאורך כל הספר, מחברים שואפים להציג חומר כך שהוא נגיש גם למומחים וגם ללא מומחים, מה שהופך אותו למשאב מצוין עבור חוקרים וסטודנטים המבקשים לרכוש הבנה עמוקה יותר של התחום. הטקסט כתוב בצורה ברורה ותמציתית, עם מונחים טכניים ומושגים מוסברים בצורה נגישה המקלה על הקוראים להבין רעיונות וטכניקות מפתח.''
, topoloji alanında etkili bir figürdü. 'Equivariant Topology and Derived Algebra'kitabı, topoloji alanında tanınmış bir figür olan Profesör J P C Greenlees'in çalışmalarını gösteren kapsamlı bir araştırma makaleleri koleksiyonudur. Kitap iki ana bölüme ayrılmıştır: ilk bölüm eşdeğer topolojiye ayrılmıştır ve ikinci bölüm türev cebirine girer. Bu ciltteki makaleler, Profesör Greenlees'in geometrik ve topolojik değişmezler, temsil teorisi ve topoloji ile geometri arasındaki etkileşim gibi konuları kapsayan geniş ilgi alanlarını ve alana katkılarını yansıtmaktadır. Kitap, Profesör Greenlees'in çalışmalarına ve modern matematik ve bilim bağlamında önemine genel bir bakış sunan bir giriş ile başlıyor. Bir dizi bölüm, simetri gruplarının incelenmesi, eşdeğişken kohomoloji ve geometrik olayları anlamak için cebirsel araçların kullanımı da dahil olmak üzere eşdeğer topolojinin çeşitli yönlerini araştırmayı takip eder. Kitabın ilk kısmı, eşdeğer topoloji ile diferansiyel geometri ve cebirsel geometri gibi matematiğin diğer alanları arasındaki ilişkinin tartışılmasıyla sona ermektedir. Kitabın ikinci kısmı, cebirsel yapılar ve geometrik olaylar arasındaki bağlantıları araştıran türev cebirine odaklanır. Bu bölümdeki bölümler, Lie cebirlerinin incelenmesinden ve bunların temsillerinden homolojik cebirin fizikteki uygulamasına kadar bir dizi konuyu kapsamaktadır. Bu bölüm aynı zamanda türev cebir alanında sanatın durumuna kapsamlı bir genel bakış içerir, son gelişmeleri ve açık problemleri vurgular. Kitap boyunca, yazarlar hem uzmanlar hem de uzman olmayanlar için erişilebilir olması için materyal sunmaya çalışırlar, bu da onu daha derin bir alan anlayışı kazanmak isteyen araştırmacılar ve öğrenciler için mükemmel bir kaynak haline getirir. Metin, okuyucuların temel fikir ve teknikleri anlamasını kolaylaştıran erişilebilir bir şekilde açıklanan teknik terimler ve kavramlarla açık ve özlü bir şekilde yazılmıştır.
، الذي كان شخصية مؤثرة في مجال الطوبولوجيا. كتاب «طوبولوجيا المراوغة والجبر المشتق» هو مجموعة شاملة من الأوراق البحثية التي توضح عمل البروفيسور J P C Greenlees، وهو شخصية معروفة في مجال الطوبولوجيا. ينقسم الكتاب إلى جزأين رئيسيين: الجزء الأول مخصص للطوبولوجيا المترابطة، والجزء الثاني يتعمق في الجبر المشتق. تعكس المقالات في هذا المجلد اهتمامات البروفيسور غرينليس ومساهماته الواسعة في هذا المجال، والتي تغطي مواضيع مثل الثوابت الهندسية والطوبولوجية ونظرية التمثيل والتفاعل بين الطوبولوجيا والهندسة. يبدأ الكتاب بمقدمة تقدم لمحة عامة عن عمل البروفيسور غرينليس وأهميته في سياق الرياضيات والعلوم الحديثة. يتبع عدد من الفصول استكشاف جوانب مختلفة من الطوبولوجيا المترابطة، بما في ذلك دراسة مجموعات التماثل، وعلم التماسك المراوغ، واستخدام الأدوات الجبرية لفهم الظواهر الهندسية. يختتم الجزء الأول من الكتاب بمناقشة العلاقة بين الطوبولوجيا المراوغة والمجالات الأخرى للرياضيات، مثل الهندسة التفاضلية والهندسة الجبرية. يحول الجزء الثاني من الكتاب التركيز إلى الجبر المشتق، واستكشاف الروابط بين الهياكل الجبرية والظواهر الهندسية. تغطي الفصول في هذا القسم مجموعة من الموضوعات، من دراسة كذبة الجبر وتمثيلاتها إلى تطبيق الجبر الهومولوجي في الفيزياء. يتضمن هذا القسم أيضًا نظرة عامة شاملة على أحدث التطورات في مجال الجبر المشتق، مع تسليط الضوء على التطورات الأخيرة والمشاكل المفتوحة. في جميع أنحاء الكتاب، يسعى المؤلفون إلى تقديم المواد بحيث تكون في متناول المتخصصين وغير المتخصصين، مما يجعلها مصدرًا ممتازًا للباحثين والطلاب الذين يسعون إلى اكتساب فهم أعمق لهذا المجال. النص مكتوب بطريقة واضحة وموجزة، مع شرح المصطلحات والمفاهيم الفنية بطريقة يسهل الوصول إليها مما يسهل على القراء فهم الأفكار والتقنيات الرئيسية.
, 토폴로지 분야에서 영향력있는 인물이었습니다. 'Equivariant Topology and Derived Algebra'라는 책은 토폴로지 분야에서 잘 알려진 J P C Greenlees 교수의 연구를 보여주는 포괄적 인 연구 논문 모음입니다. 이 책은 두 가지 주요 부분으로 나뉩니다. 첫 번째 부분은 등변 량 토폴로지에 전념하고 두 번째 부분은 미분 대수를 탐구합니다. 이 책의 기사는 기하학적 및 토폴로지 불변량, 표현 이론 및 토폴로지와 기하학 사이의 상호 작용과 같은 주제를 다루는 Greenlees 교수의 광범위한 관심과 현장에 대한 기여를 반영합니다. 이 책은 Greenlees 교수의 연구와 현대 수학과 과학의 맥락에서 그 중요성에 대한 개요를 제공하는 소개로 시작됩니다. 여러 장에서 대칭 그룹 연구, 등변 량 상 동성 및 기하학적 현상을 이해하기위한 대수 도구 사용을 포함하여 등변 량 토폴로지의 다양한 측면을 탐색합니다. 이 책의 첫 번째 부분은 등변 량 토폴로지와 미분 기하학 및 대수 기하학과 같은 다른 수학 영역 간의 관계에 대한 토론으로 마무리됩니다. 이 책의 두 번째 부분은 초점을 미분 대수로 이동하여 대수 구조와 기하학적 현상 사이의 연결을 탐구합니다. 이 섹션의 장은 Lie 대수 연구와 그 표현에서 물리학의 상동 대수 적용에 이르기까지 다양한 주제를 다룹니다. 이 섹션에는 또한 파생 대수 분야의 최신 상태에 대한 포괄적 인 개요가 포함되어 있으며 최근의 발전과 개방 된 문제를 강조합니다. 이 책 전체에서 저자는 전문가와 비전문가 모두에게 접근 할 수 있도록 자료를 제시하려고 노력하여 해당 분야에 대해 더 깊이 이해하고자하는 연구원과 학생들에게 훌륭한 자료가되었습니다. 텍스트는 독자가 핵심 아이디어와 기술을보다 쉽게 이해할 수 있도록 기술적 인 용어와 개념을 접근 가능한 방식으로 설명하면서 명확하고 간결한 방식으로 작성되었습니다.
、トポロジーの分野で影響力のある人物でした。「等分位相トポロジーと派生代数」は、トポロジーの分野でよく知られているJ P C Greenlees教授の仕事を実証する研究論文の包括的なコレクションです。本書は2つの主要な部分に分かれています。最初の部分は等分位相に捧げられ、2番目の部分は微分代数に焦点を当てています。本稿では、幾何学的・位相的不変量、表現理論、トポロジーと幾何学の相互作用といった分野におけるグリーンリーズ教授の幅広い関心と貢献を紹介する。この本は、グリーンリーズ教授の研究の概要と、現代の数学と科学の文脈におけるその重要性を説明する紹介から始まります。いくつかの章では、対称群の研究、等分コホモロジー、幾何学現象を理解するための代数的ツールの使用など、等分位相トポロジーの様々な側面を探求している。本書の最初の部分は、微分幾何学や代数幾何学のような、等分位相トポロジーと数学の他の領域との関係についての議論で終わる。第2部では微分代数に焦点を移し、代数構造と幾何学現象の関係を探る。このセクションの章では、リー代数の研究とその表現から物理学におけるホモロジー代数の応用まで、さまざまなトピックをカバーしています。このセクションでは、微分代数の分野における芸術の状態の包括的な概要も含み、最近の進歩とオープンな問題を強調しています。著者は本書を通じて、専門家と非専門家の両方にアクセスできるように資料を提示することに努めており、この分野をより深く理解しようとする研究者や学生にとって優れたリソースとなっています。テキストは明確で簡潔な方法で書かれており、技術用語や概念がアクセス可能な方法で説明されているため、読者は重要なアイデアやテクニックを理解しやすくなります。
本書探討了權力是一種難以捉摸和多方面的力量,滲透到社會的各個方面,從國家和父權制到個人的經驗。作者認為,權力不僅是可以看到或感受到的東西,而且是深深植根於我們的語言,文化,歷史的東西。這本書的主要情節圍繞著尋求對權力的本質以及它如何塑造我們的生活,關系和社會的理解。作者探討了通過各種機制(例如宣傳,意識形態和技術)行使和維持權力的方法。他們認為,這些機制正在不斷發展並適應當權者的需求,因此很難準確確定權力的來源及其真實意圖。該書的主要主題之一是這樣的想法,即權力不僅由個人或團體持有,而且還嵌入到我們社會結構和機構的結構中。作者認為,權力不僅是對他人的控制,而且是我們看待和理解周圍世界的方式。這意味著權力不僅是當選者可以擁有的,而且是我們所有人都感興趣的,無論我們是否意識到它。

You may also be interested in:

Equivariant Topology and Derived Algebra
Equivariant Poincare Duality on G-Manifolds: Equivariant Gysin Morphism and Equivariant Euler Classes (Lecture Notes in Mathematics)
Basic Topology 2: Topological Groups, Topology of Manifolds and Lie Groups
Equivariant Degree Theory
Linear Algebra and Geometry (Algebra, Logic and Applications) by P. K. Suetin (14-Jul-1989) Hardcover
Algebra and Pre-Algebra It|s Easy
Easy Algebra Step-by-Step Master High-Frequency Concepts and Skillls for Algebra Proficiency—Fast! Second Edition
Photoelectric Detection on Derived Attributes of Targets
Biomass-Derived Humins: Formation, Chemistry and Structure
A Study in Derived Algebraic Geometry, Volumes I Correspondences and Duality
From the Heart: Poetry Derived from Life|s Trials and Tribulations
Chemistry, Biology and Potential Applications of Honeybee Plant-Derived Products
The Story of the Upper Canadian Rebellion: Largely Derived From Original Sources and Documents; Volume 2
A Scotch Paisano in Old Los Angeles: Hugo Reid|s Life in California, 1832-1852, Derived from His Correspondence
African Flora to Fight Bacterial Resistance, Part I Standards for the Activity of Plant-Derived Products (Volume 106)
Linear Algebra Done Right (Hardcover)LINEAR ALGEBRA DONE RIGHT (HARDCOVER) by Axler, Sheldon Jay (Author) on Jul-18-1997 Hardcover
Introduction to Topology
Algebraic topology
Topology and physics
Principles of Topology
Introduction to Topology
General topology
Lectures on the Topology of 3-Manifolds
Lectures On Algebraic Topology
A Basic Course in Algebraic Topology
Riemann, Topology, and Physics
Topology of a Phantom City
Introduction to Algebraic Topology
Elementary Concepts of Topology
The Geometry and Topology of Three-Manifolds
Designing with the Wind: Climate-Derived Architecture (Digital Innovations in Architecture, Engineering and Construction)
Topology in Collective Magnetization Dynamics
Basic Concepts of Algebraic Topology
Pure and Applied Algebraic Topology
Algebraic Topology A Toolkit (De Gruyter Textbook)
Algebraic Topology A Toolkit (De Gruyter Textbook)
The Geometry and Topology of Coxeter Groups (Lms-32)
Transparent Shells Form, Topology, Structure
Knots, Molecules, and the Universe An Introduction to Topology
Selected Problems in Differential Geometry and Topology